游客
题文

如图(1)在梯形ABCD中,AD∥BC,且AD=4cm,AB=6cm,BC=12cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动. 当Q点到达B点时,动点P、Q同时停止运动. 设点P、Q同时出发,并运动了t秒.
 
求梯形ABCD的面积.
当t为何值时,四边形PQCD成为平行四边形?
是否存在t,使得P点在线段DC上,且PQ⊥DC(如图(2)所示)?若存在,求出此时t的值,若不存在,说明理由

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

在四边形ABCD中,若AB⊥DC,且AD∥BC,则称四边形ABCD为平行四边形(即两组对边分别平行的四边形叫做平行四边形).
(1)已知:如图(1),四边形ABCD为平行四边形,求证:∠B=∠D;
(2)已知:如图(2),四边形EFGH中,EF∥HG,∠E=∠G,求证:四边形EFGH为平行四边形.

已知,关于x,y的方程组的解满足x>y>0.
(1)求a的取值范围;
(2)化简|a|-|2-a|.

如图,在△ABC中,∠B>∠C,AD⊥BC,垂足为D,AE平分∠BAC.
(1)已知∠B=60°,∠C=30°,求∠DAE的度数;
(2)已知∠B=3∠C,求证:∠DAE=∠C.

小明有1元和5角的硬币共15枚,其中1元的硬币不少于2枚,这些硬币的总币值少于10元.问小明可能有几枚1元的硬币?

看图填空:
已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.

证明:∵AD⊥BC,EF⊥BC(已知)
∴∠ADC=90°,∠EFC=90°(垂线的定义)
=

∴∠1=
∠2=
∵∠1=∠2(已知)
=
∴AD平分∠BAC(角平分线定义)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号