游客
题文

(本小题满分14分)若为常
数,且
(Ⅰ)求对所有实数成立的充要条件(用表示);
(Ⅱ)设为两实数,,若
求证:在区间上的单调增区间的长度和为(闭区间的长度定义为).

科目 数学   题型 解答题   难度 较难
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.

(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?

如图,在正方体中,分别是中点.

求证:(1)∥平面
(2)平面.

已知向量,且共线,其中.
(1)求的值;
(2)若,求的值.

(本小题满分16分)已知为实数,函数,函数
(1)当时,令,求函数的极值;
(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.

(本小题满分16分)已知数列)满足其中
(1)当时,求关于的表达式,并求的取值范围;
(2)设集合
①若,求证:
②是否存在实数,使都属于?若存在,请求出实数;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号