如图,圆柱OO内有一个三棱柱ABC—A,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。(1)证明:平面平面;(2)设AB=AA,在圆柱OO内随机选取一点,记该点取自三棱柱ABC—AB内的概率为P.①当点C在圆周上运动时,求的最大值;②记平面与平面所成的角为,当取最大值时,求的值。
已知函数,( 为常数,为自然对数的底). (1)当时,求; (2)若在时取得极小值,试确定的取值范围; (3)在(2)的条件下,设由的极大值构成的函数为,将换元为,试判断曲线是否能与直线(为确定的常数)相切,并说明理由.
设函数. (1)若在时有极值,求实数的值和的极大值; (2)若在定义域上是增函数,求实数的取值范围.
为坐标原点,已知向量分别对应复数,且,,可以与任意实数比较大小,求的值.
已知函数在处取得极值,求函数以及的极大值和极小值.
设是函数的一个极值点. (1)求与的关系式(用表示),并求的单调区间; (2)设,在区间[0,4]上是增函数.若存在使得成立,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号