游客
题文

如图,在平面直角坐标系中,点A、B、C、P的坐标分别为(0,1)、
(-1,0)、(1,0)、(-1,-1)。
求经过A、B、C三点的抛物线的表达式;
以P为位似中心,将△ABC放大,使得放大后的△A1B1C1与△OAB对应线段的比为3:1,请在右图网格中画出放大后的△A1B1C1;(所画△A1B1C1与△ABC在点P同侧);
经过A1、B1、C1三点的抛物线能否由(1)中的抛物线平移得到?请说明理由。

科目 数学   题型 解答题   难度 较易
知识点: 二次函数在给定区间上的最值 计算器—基础知识
登录免费查看答案和解析
相关试题

在平面直角坐标系 xOy 中,函数 F 1 F 2 的图象关于 y 轴对称,它们与直线 x = t ( t > 0 ) 分别相交于点 P Q

(1)如图,函数 F 1 y = x + 1 ,当 t = 2 时, PQ 的长为    

(2)函数 F 1 y = 3 x ,当 PQ = 6 时, t 的值为   

(3)函数 F 1 y = a x 2 + bx + c ( a 0 )

①当 t = b b 时,求 ΔOPQ 的面积;

②若 c > 0 ,函数 F 1 F 2 的图象与 x 轴正半轴分别交于点 A ( 5 , 0 ) B ( 1 , 0 ) ,当 c x c + 1 时,设函数 F 1 的最大值和函数 F 2 的最小值的差为 h ,求 h 关于 c 的函数解析式,并直接写出自变量 c 的取值范围.

如图1, ΔABC 中,点 D E F 分别在边 AB BC AC 上, BE = CE ,点 G 在线段 CD 上, CG = CA GF = DE AFG = CDE

(1)填空:与 CAG 相等的角是   

(2)用等式表示线段 AD BD 的数量关系,并证明;

(3)若 BAC = 90 ° ABC = 2 ACD (如图 2 ) ,求 AC AB 的值.

如图, ΔABC 中, ACB = 90 ° AC = 6 cm BC = 8 cm ,点 D 从点 B 出发,沿边 BA AC 2 cm / s 的速度向终点 C 运动,过点 D DE / / BC ,交边 AC (或 AB ) 于点 E .设点 D 的运动时间为 t ( s ) ΔCDE 的面积为 S ( c m 2 )

(1)当点 D 与点 A 重合时,求 t 的值;

(2)求 S 关于 t 的函数解析式,并直接写出自变量 t 的取值范围.

甲、乙两个探测气球分别从海拔 5 m 15 m 处同时出发,匀速上升 60 min .如图是甲、乙两个探测气球所在位置的海拔 y (单位: m ) 与气球上升时间 x (单位: min ) 的函数图象.

(1)求这两个气球在上升过程中 y 关于 x 的函数解析式;

(2)当这两个气球的海拔高度相差 15 m 时,求上升的时间.

四边形 ABCD 内接于 O AB O 的直径, AD = CD

(1)如图1,求证 ABC = 2 ACD

(2)过点 D O 的切线,交 BC 延长线于点 P (如图 2 ) .若 tan CAB = 5 12 BC = 1 ,求 PD 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号