(本小题满分16分)
某企业有A、B两种型号的家电产品参加家电下乡活动,若企业投放A、B两种型号家电产品的价值分别为、
万元,则农民购买家电产品获得的补贴分别为
万元、
万元(
且为常数).已知该企业投放总价值为100万元的A、B两种型号的家电产品,且A、B两种型号的投放金额都不低于10万元.
(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;
(2)问A、B两种型号的家电产品各投放多少万元时,农民得到的总补贴最多?
如图所示,在三棱柱中,
点为棱
的中点.
(1)求证:.
(2)若三棱柱为直三棱柱,且各棱长均为,求异面直线
与
所成的角的余弦值.
一个圆锥,它的底面直径和高均为.
(1)求这个圆锥的表面积和体积.
(2)在该圆锥内作一内接圆柱,当圆柱的底面半径和高分别为多少时,它的侧面积最大?最大值是多少?
不等式,当
时恒成立.求
的取值范围.
在直角坐标系中,直线
的参数方程为
(
为参数).在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,圆
的方程为
.
(1)求圆的直角坐标方程;
(2)设圆与直线
交于点
,若点
的坐标为
,求
已知曲线C:(
为参数).
(1)将C的参数方程化为普通方程;
(2)若把C上各点的坐标经过伸缩变换后得到曲线
,求曲线
上任意一点到两坐标轴距离之积的最大值.