计算:
先化简,再求值:
,其中
如图,学校教学楼上悬挂一块长为 的标语牌,即 .数学活动课上,小明和小红要测量标语牌的底部点 到地面的距离.测角仪支架高 ,小明在 处测得标语牌底部点 的仰角为 ,小红在 处测得标语牌顶部点 的仰角为 , ,依据他们测量的数据能否求出标语牌底部点 到地面的距离 的长?若能,请计算;若不能,请说明理由(图中点 , , , , , , 在同一平面内)
(参考数据: , ,
如图,在 中, , ,点 在 的内部, 经过 , 两点,交 于点 ,连接 并延长交 于点 ,以 , 为邻边作 .
(1)判断 与 的位置关系,并说明理由.
(2)若点 是 的中点, 的半径为2,求 的长.
为响应“绿色生活,美丽家园”号召,某社区计划种植甲、乙两种花卉来美化小区环境.若种植甲种花卉 ,乙种花卉 ,共需430元;种植甲种花卉 ,乙种花卉 ,共需260元.
(1)求:该社区种植甲种花卉 和种植乙种花卉 各需多少元?
(2)该社区准备种植两种花卉共 且费用不超过6300元,那么社区最多能种植乙种花卉多少平方米?
为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
课程 |
人数 |
所占百分比 |
声乐 |
14 |
|
舞蹈 |
8 |
|
书法 |
16 |
|
摄影 |
|
|
合计 |
|
|
根据以上信息,解答下列问题:
(1) , .
(2)求出 的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.
已知:在 外分别以 , 为边作 与 .
(1)如图1, 与 分别是以 , 为斜边的等腰直角三角形,连接 .以 为直角边构造 ,且 ,连接 , , .
求证:① .
②四边形 是平行四边形.
(2)小明受到图1的启发做了进一步探究:
如图2,在 外分别以 , 为斜边作 与 ,并使 ,取 的中点 ,连接 , 后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出 的值及 的度数.
(3)小颖受到启发也做了探究:
如图3,在 外分别以 , 为底边作等腰三角形 和等腰三角形 ,并使 ,取 的中点 ,连接 , 后发现,当给定 时,两者间也存在一定的数量关系且夹角度数一定,若 , ,请你帮助小颖用含 , 的代数式直接写出 的值,并用含 的代数式直接表示 的度数.