游客
题文

一次远足,小明与小聪分别从A,B两个景点出发,沿同一条公路相向而行。他们出发的时间是上午8:00,小聪行走的速度是小明的, A,B两个景点之间的路程是9千米.设小明行走的速度为x千米/小时.
经过t小时,在小明和小聪相遇前,他们相距多少千米?
如果小聪行走的速度是4千米/小时,那么到几时几分,小明与小聪相距3千米?

科目 数学   题型 解答题   难度 较易
知识点: 幂的乘方与积的乘方
登录免费查看答案和解析
相关试题

已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.

(资阳)已知直线)过点F(0,1),与抛物线相交于B、C两点.

(1)如图1,当点C的横坐标为1时,求直线BC的解析式;
(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;
(3)如图2,设B(m,n)(m<0),过点E(0,﹣1)的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.

(自贡)观察下表

我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:
(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n格的“特征多项式”为
(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,
①求x,y的值;
②在此条件下,第n格的特征是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.

(内江)(1)填空:=
=
=
(2)猜想:= (其中n为正整数,且).
(3)利用(2)猜想的结论计算:

(达州)在△ABC的外接圆⊙O中,△ABC的外角平分线CD交⊙O于点D,F为上一点,且连接DF,并延长DF交BA的延长线于点E.
(1)判断DB与DA的数量关系,并说明理由;
(2)求证:△BCD≌△AFD;
(3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号