(本小题满分14分)已知函数,.(1)设(其中是的导函数),求的最大值;(2)证明: 当时,求证:;(3)设,当时,不等式恒成立,求的最大值.
设是公比大于的等比数列,为数列的前项和.已知,且,,构成等差数列. (1)求数列的通项公式; (2)令求数列的前项和.
已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点. (1)证明:; (2)判断并说明上是否存在点,使得∥平面;
等差数列的各项均为正数,,前项和为,为等比数列, ,且. (1)求与; (2)求和:.
设命题p:函数的定义域为R; 命题q:不等式,对∈(-∞,-1)上恒成立, 如果命题“”为真命题,命题“”为假命题,求实数的取值范围.
已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量,且向量. (1)求角A的大小; (2)若的面积为,求b,c.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号