游客
题文

电焊工想利用一块边长为的正方形钢板做成一个扇形,于是设计了以下三种方案:
方案一:如图1,直接从钢板上割下扇形
方案二:如图2,先在钢板上沿对角线割下两个扇形,再焊接成一个大扇形(如图3).
方案三:如图4,先把钢板分成两个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将四个小扇形按与图3类似的方法焊接成一个大扇形.

图1                图2               图3
容易得出图1、图3中所得扇形的圆心角均为,那么按方案三所焊接成的大扇形的圆心角也为吗?为什么?
容易得出图1中扇形与图3中所得大扇形的面积相等,那么按方案三所焊成的大扇形的面积也与方案二所焊接成的大扇形的面积相等吗?若不相等,面积是增大还是减小?为什么?
若将正方形钢板按类似图4的方式割成个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将这个小扇形按类似方案三的方式焊接成一个大扇形,则当逐渐增大时,所焊接成的大扇形的面积如何变化?

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

如图,在由边长为1个单位长度的小正方形组成的网格图中有格点△ABC.(注:顶点在网格线交点处的三角形叫做格点三角形)
(1)图中AC边上的高为_________个单位长度;
(2)只用没有刻度的直尺,按如下要求画图:
①以点C为位似中心,作△DEC∽△ABC,且相似比为1∶2;
②以AB为一边,作矩形ABMN,使得它的面积恰好为△ABC的面积的2倍.

在1、2、3、4、5这五个数中,先任意取一个数a,然后在余下的数中任意取出一个数b,组成一个点(a,b).求组成的点(a,b)恰好横坐标为偶数且纵坐标为奇数的概率.(请用“画树状图”或“列表”等方法写出分析过程)

已知:如图,菱形ABCD中,∠A=60°,F是CD的中点,过C作CE∥BD,且DE⊥CE.求证:BF =DE.

解方程或不等式组(本题共有2小题,每小题4分,共8分)
(1)解方程:x2-5x-4=0;
(2)解不等式组:

(本题共有2小题,每小题4分,共8分)
(1)计算:(-1-(2015-0―|-2|;(2)化简:-(a-2).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号