如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,
求证:平面A B1D1∥平面EFG;
(2) 求证:平面AA1C⊥面EFG.
本题满分13分)
某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(
为常数,且
,设该食品厂每公斤蘑菇的出厂价为
元(
),根据市场调查,销售量
与
成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.
(Ⅰ)求该工厂的每日利润元与每公斤蘑菇
的出厂价
元的函数关系式;
(Ⅱ)若,当每公斤蘑菇的出厂价
为多少元时,该工厂的利润
最大,并求最大值.
.
如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,AB
AD,AF=AB=BC=FE=
AD.
(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.
已知数列的前
项和为
,满足
.
(Ⅰ)证明:数列为等比数列,并求出
;
(Ⅱ)设,求
的最大项.
在锐角中,
三内角所对的边分别为
.
设,
(Ⅰ)若,求
的
面积;
(Ⅱ)求的最大值.
已知数列满足条件
,
,
,设
(1)求数列的通项公式;
(2)求和:。