土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动,其中有两个岩石颗粒A和B与土星中心的距离分别为rA=8.0×l04km和rB =1.2×l05 km.忽略所有岩石颗粒间的相互作用.(结果可用根式表示)求岩石颗粒A和B的线速度之比;
求岩石颗粒A和B酌周期之比;
土星探测器上有一物体,在地球上重为10N,推算出它在距土星中心3.2×l05 km处受到土星的引力为0.38N,已知地球半径为6.4×l04 km,请估算土星质量是地球质量的多少倍?
地震时,震源会同时产生两种波,一种是传播速度约为 的 波,另一种是传播速度约为 的 波. 一次地震发生时,某地震监测点记录到首次到达的 波比首次到达的 波早 . 假定地震波沿直线传播,震源的振动周期为 , 求震源与监测点之间的距离 和 波的波长 .
如题图所示,一定质量的理想气体从状态 经等压过程到状态 . 此过程中,气体压强 ,吸收的热量 ,求此过程中气体内能的增量.
如图甲所示,空间分布着有理想边界的匀强电场和匀强磁场.匀强磁场分为Ⅰ、Ⅱ两个区域,其边界为MN、PQ,磁感应强度大小均为B,方向如图所示,Ⅰ区域高度为d,Ⅱ区域的高度足够大.一个质量为m、电量为q的带正电的小球从磁场上方的O点由静止开始下落,进入电、磁复合场后,恰能做匀速圆周运动.
(1)求电场强度E的大小;
(2)若带电小球运动一定时间后恰能回到O点,求带电小球释放时距MN的高度h;
(3)若带电小球从距MN的高度为3h的O'点由静止开始下落,为使带电小球运动一定时间后仍能回到O'点,需将磁场Ⅱ向下移动一定距离(如图乙所示),求磁场Ⅱ向下移动的距离y及小球从O'点释放到第一次回到O'点的运动时间T。
在动摩擦因数m=0.2的粗糙绝缘足够长的水平滑漕中,长为2L的绝缘轻质细杆两端各连接一个质量均为m的带电小球A和B,如图为俯视图(槽两侧光滑)。A球的电荷量为+2q,B球的电荷量为-3q(均可视为质点,也不考虑两者间相互作用的库仑力)。现让A处于如图所示的有界匀强电场区域MPQN内,已知虚线MP恰位于细杆的中垂线,MP和NQ的距离为3L,匀强电场的场强大小为E=1.2mg/q,方向水平向右。释放带电系统,让A、B从静止开始运动(忽略小球运动中所产生的磁场造成的影响)。求:
(1)小球B第一次到达电场边界MP所用的时间;
(2)小球A第一次离开电场边界NQ时的速度大小
(3)带电系统运动过程中,B球电势能增加量的最大值。
如图a所示,水平桌面的左端固定一个竖直放置的光滑圆弧轨道,其半径R=0.5m, 圆弧轨道底端与水平桌面相切C点,桌面CD长L=1 m,高h2=0.5m,有质量为m(m为末知)的小物块从圆弧上A点由静止释放,A点距桌面的高度h1="0.2m," 小物块经过圆弧轨道底端滑到桌面CD上,在桌面CD上运动时始终受到一个水平向右的恒力F作用.然后从D点飞出做平抛运动,最后落到水平地面上.设小物块从D点飞落到的水平地面上的水平距离为x,如图b是x2-F的图像,取重力加速度g="10" m/s2.
(1)试写出小物块经D点时的速度vD与x的关系表达式;
(2)小物体与水平桌面CD间动摩擦因数μ是多大?
(3)若小物体与水平桌面CD间动摩擦因数μ是从第⑵问中的μ值的一半,再将小物块从A由静止释放,经过D点滑出后的水平位移大小为1 m,求此情况下的恒力F的大小?