已知直角梯形纸片OABC在平面直角坐标系中的位置如图①所示,四
个顶点的坐标分别为O(0,0),A(10,0),B(8,2),C(0,2
),点P在线段OA上(不与O、A重合),将纸片折叠,使点A落在射线AB上(记为点A’),折痕PQ与射线AB交于点Q,设OP=x,折叠后纸片重叠部分的面积为y.(图②供探索用)
求∠OAB的度数;
求y与x的函数关系式,并写出对应的x的取值范围;
y存在最大值吗?若存在,求出这个最大值,并求此时x的值;若不存在,说明理由.
如图,在□ABCD中,E、F分别是边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.
(1)求证:DE∥BF.
(2)若∠G=90°,求证:四边形DEBF是菱形.
如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC.
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F.连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.
(2)若AB∥CD,证明:四边形ABCD是菱形.
(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.
如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.
求证:四边形ABCD是菱形.
如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.