若椭圆C1:+
=1(0<b<2)的离心率等于
,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上.
(Ⅰ)求抛物线C2的方程;
(Ⅱ)若过M(-1,0)的直线l与抛物线C2交于E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
在锐角三角形中,边a、b是方程x2-2x+2=0的两根,角A、B满足2sin(A+B)-=0,求角C的度数,边c的长度及△ABC的面积.
设是满足不等式
≥
的自然数
的个数.
(1)求的函数解析式;
(2),求
;
(3)设,由(2)中
及
构成函数
,
,求
的最小值与最大值.
个正数排成
行
列:
其中每一行的数由左至右成等差数列,每一列的数由上至下成等比数列,并且所有公比相等,已知,
,
,试求
的值.
设数列的前
项和为
,
,
.
⑴求证:数列是等差数列.
⑵设是数列
的前
项和,求使
对所有的
都成立的最大正整数
的值.
在△ABC中,已知角A、B、C所对的边分别是a、b、c,边c=,且tanA+tanB=tanA·tanB-,又△ABC的面积为S△ABC=,求a+b的值。