如图所示是一种悬球式加速度仪,它可以用来测定沿水平轨道做匀加速直线运动的列车的加速度。m是一个金属球,它系在细金属丝的下端,金属丝的上端悬挂在O点,AB是一根长为l的电阻丝,其阻值为R。金属丝与电阻丝接触良好,摩擦不计。电阻丝的中点C焊接一根导线.从O点也引出一根导线,两线之间接入一个电压表V(金属丝和导线电阻不计)。图中虚线OC与AB相垂直,且OC=h,电阻丝AB接在电压恒为U的直流稳压电源上。整个装置固定在列车中使AB沿着车前进的方向。列车静止时金属丝呈竖直状态;当列车加速或减速前进时,金属线将偏离竖直方向θ,从电压表的读数变化可以测出加速度的大小。当列车向右做匀加速直线运动时,试写出加速度a与θ角的关系及加速度a与电压表读数U′的对应关系。
这个装置能测得的最大加速度是多少?
如图所示,离子源从小孔发射出带电量为e的正离子(初速可忽略),在加速电压U的作用下,沿MO方向进入匀强磁场中,磁场限制在以O为圆心,半径为r的区域内,磁感应强度为B,方向垂直纸面向外,离子从N点射出,已知(不计重力),则正离子质量为多少?正离子通过磁场所需的时间为多少?
如图所示,匀强磁场沿水平方向,垂直纸面向里,磁感强度B=1T,匀强电场方向水平向右,场强N/C。一带正电的微粒质量m=2×10-6kg,电荷量q=2×10-6C,在此空间恰好做匀速直线运动,问:
(1)带电微粒运动速度的大小和方向怎样?
(2)若微粒运动到P点时刻,突然将磁场撤去,那么经多少时间微粒到达Q点?(设PQ连线与电场方向平行)
如图所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y轴负方向的匀强电场,场强为E。一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出。射出以后,它第三次到达x轴时,与点O的距离为L。不计粒子重力,求:
(1)粒子射出时的速度v;
(2)粒子从射出以后第三次到达x轴所用的总时间;
(3)若粒子从射出以后到第n次向下穿过x轴所用的总时间为tn,写出tn的表达式。
一带电粒子无初速度的进入一加速电场A,然后垂直进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),如图所示。已知加速电场A板间电压为U1,M、N两板间的电压为U2,两板间的距离为d,板长为L,粒子的质量为m,电荷量为q,不计粒子受到的重力及它们之间的相互作用力。求:
(1)粒子穿过A板时速度大小v0;
(2)粒子从偏转电场射出时的侧移量y;
(3)粒子从偏转电场射出时速度的偏转角q。
如图所示,电源的总功率为40W,电阻,
,电源内阻
,电源的输出功率为
。求:
(1)电源的内电路功率和电路中的总电流;
(2)电源的电动势;
(3)的阻值。