如图,平面直角坐标系中,直线与x轴交于点A(2,0),
与y轴交于点B, 且tan∠BAO=.
(1)求直线的解析式;
(2)将直线
绕点B旋转60°,求旋转后的直线解析式
(本题满分12分)
已知:⊙O的直径AB=8,⊙B与⊙O相交于点C、D,⊙O的直径CF与⊙B相交于点E,设⊙B的半径为,OE的长为
。
(1)如图,当点E在线段OC上时,求
关于
的函数解析式,并写出定义域;
(2)当点E在直径CF上时,如果OE的长为3,求公共弦CD的长;
(3)设⊙B与AB相交于G,试问△OEG能否为等腰三角形?如果能够,请直接写出BC弧的长度(不必写过程);如果不能,请简要说明理由
(本小题满分12分)
某县有着丰富的海产品资源. 某海产品加工企业已收购某种海产品60吨, 根据市场信息, 如果对该海产品进行粗加工, 每天可加工8吨, 每吨可获利1000元;如果进行精加工, 每天可加工2吨, 每吨可获利5000元. 由于受设备条件的限制,两种加工方式不能同时进行.(1)设精加工的吨数为
吨, 则粗加工的吨数为 吨,加工这批海产品需要天, 可获利元(用含
的代数式表示);
(2)为了保鲜的需要, 该企业必须在两周(14天)内将这批海产品全部加工完毕,精加工的吨数
在什么范围内时, 该企业加工这批海产品的获利不低于120000元?
机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西方向行走13m至A处,再沿正南方向行走14m至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上。
(1)求弦BC的长;
(2)求圆O的半径。(本题参考数据:
,
,
)
已知关于的一元二次方程
(k为常数)
(1)求证:方程有两个不相等的实数根。
(2)设
、
为方程的两个实数根,且
试求k的值。
水是生命之源。长期以来,某市由于水价格不合理,一定程度上造成了水资源的浪费。为改善这一状况,相关部门正在研究制定居民用水价格调整方案。小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量、可承受的水价调整的幅度等进行调查,并把调查结果整理成图a、图b.
已知被调查居民每户每月的用水量在之间,被调查的居民中对居民用水价格调价幅度抱“无所谓”态度的有8户,试回答下列问题:
(1)图a使用的统计图表的名称是 ,它是表示一组数据 的量;(填“平均水平”、“离散程度”或“分布情况”)
(2)上述两个统计图表是否完整,若不完整,试把它们补全;
(3)若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?
|