(本题9分)某水产品市场管理部门规划建造面积为2400 m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28 m2,月租费为400元;每间B种类型的店面的平均面积为20m2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A种类型店面的数量;
(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.为使店面的月租费最高,应建造A种类型的店面多少间?
已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为4,BE=2,求∠F的度数.
(1)已知二次函数,请你化成
的形式,并在直角坐标系中画出
的图象;
(2)如果,
是(1)中图象上的两点,且
,请直接写出
、
的大小关系;
(3)利用(1)中的图象表示出方程的根来,要求保留画图痕迹,说明结果.
如图,在平面直角坐标系中,⊙A与y轴相切于点
,与x轴相交于M、N两点.如果点M的坐标为
,求点N的坐标.
如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,且,
,求AB的值.
已知抛物线与x轴相交于两点A(1,0),B(-3,0),与y轴相交于点C(0,3).
(1)求此抛物线的函数表达式;
(2)如果点是抛物线上的一点,求△ABD的面积.