如图所示,在a、b两端有直流恒压电源,输出电压恒为Uab,R2=40Ω,右端连接间距d=0.04m、板长l=10cm的两水平放置的平行金属板,板间电场视为匀强电场。闭合开关,将质量为m=1.6×10-6kg、带电量q=3.2×10-8C的微粒以初速度v0=0.5m/s沿两板中线水平射入板间。当滑动变阻器接入电路的阻值为15Ω时,微粒恰好沿中线匀速运动,通过电动机的电流为0.5A。已知电动机内阻R1=2Ω,取g=10m/s2。试问:
输出电压为Uab是多大?
在上述条件下,电动机的输出功率和电源的输出功率?
为使微粒不打在金属板上,R2两端的电压应满足什么条件?
如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1 =" 0.40" T,方向垂直纸面向里,电场强度E = 2.0×105 V/m,PQ为板间中线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面的正三角形匀强磁场区域,磁感应强度B2 =" 0.25" T。一束带电量q = 8.0×10-19 C,质量m = 8.0×10-26 kg的正离子从P点射入平行板间,不计重力,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射向三角形磁场区,离子通过x轴时的速度方向与x轴正方向夹角为60°。则:
(1)离子运动的速度为多大?
(2)若正三角形区域内的匀强磁场方向垂直纸面向外,离子在磁场中运动的时间是多少?
(3)若正三角形区域内的匀强磁场方向垂直纸面向里,正三角形磁场区域的最小边长为多少?
如图所示,在方向水平向右的匀强电场中,一不可伸长的绝缘细线的一端连着一个带电量为q、质量为m的带正电的小球,另一端固定于O点。把小球拉起至细线与场强平行,然后无初速释放。已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为θ,θ=37o。求:
(1)电场强度E的大小;
(2)小球经过最低点时绳子的拉力大小;
(3)小球经过最低点时小球的加速度。
如图所示电路,电源电动势E=12V,内阻r=1Ω。外电路中电阻R1=2Ω,R2=3Ω,R3=7.5Ω。电容器的电容C=2μF。求:
(1)电键S闭合时,电路稳定时电容器所带的电量;
(2)电键从闭合到断开,流过电流表A的电量。
如图,xOy平面内存在着沿y轴正方向的匀强电场,一个质量为m、带电荷量为+q的粒子从坐标原点O以速度v0沿x轴正方向开始运动。当它经过图中虚线上的M(,a)点时,撤去电场,粒子继续运动一段时间后进入一个矩形匀强磁场区域(图中未画出),又从虚线上的某一位置N处沿y轴负方向运动并再次经过M点。已知磁场方向垂直xOy平面(纸面)向里,磁感应强度大小为B,不计粒子的重力。试求:
(1)电场强度的大小;
(2)N点的坐标;
(3)矩形磁场的最小面积。
相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1.0kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,确保金属棒与金属导轨良好接触,如图(a)所示。虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同。ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为R=1.8Ω,导轨电阻不计。现有一方向竖直向下、大小按图(b)所示规律变化的外力F作用在ab棒上,使棒从静止开始沿导轨匀加速运动,与此同时cd棒也由静止释放。取重力加速度g=10m/s2。求:
(1)磁感应强度B的大小和ab棒的加速度大小;
(2)若在2s内外力F做功40J,则这一过程中两金属棒产生的总焦耳热是多少?
(3)判断cd棒将做怎样的运动,并求出cd棒达到最大速度所需的时间t0。