(13分)用磁场可以约束带电离子的轨迹,如图所示,宽d=2cm的有界匀强磁场的横向范围足够大,磁感应强度方向垂直纸面向里,B=1T。现有一束带正电的粒子从O点以v=2×106 m/s的速度沿纸面垂直边界进入磁场。粒子的电荷量q=1.6×10-19C,质量m=3.2×10-27kg。求:
(1)粒子在磁场中运动的轨道半径r和运动时间t是多大?
(2)粒子保持原有速度,又不从磁场上边界射出,则磁感应强度最小为多大?
如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5m,物块A以v0=6m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1kg(重力加速度g取10m/s2;A、B视为质点,碰撞时间极短)。
(1)求A滑过Q点时的速度大小v和受到的弹力大小F;
(2)若碰后AB最终停止在第k个粗糙段上,求k的数值;
(1)在物理学发展史上,许多科学家通过恰当应用科学研究方法,超越了当时研究条件的局限和传统观念,取得了辉煌的研究成果,下列符合物理学史实的是
A.牛顿由理想斜面实验通过逻辑推理否定了力是维持物体运动的原因的观点。
B.19世纪以前,对相隔一定距离的电荷或磁体间的作用不少人持超距作用的观点,在19世纪30年代,法拉第提出电场或磁场的观点。
C.人们从电荷间的作用力与引力的相似性中提出“平方反比”的猜想,这一科学问题是由法国科学家库仑通过库仑扭秤实验完成的
D.安培首先引入电场线和磁感线,极大地推动了电磁现象的研究。
E.牛顿通过著名的“月地检验”,突破天地之间的束缚,使得万有引力定律成为科学史上最伟大定律之一。
(2)微波实验是近代物理实验室中的一个重要部分.反射式速调管是一种结构简单、实用价值较高的常用微波器件之一,它是利用电子团与场相互作用在电场中发生振荡来产生微波,其振荡原理与下述过程类似.如图1所示,在虚线MN两侧分布着方向平行于x轴的电场,其电势φ随x的分布可简化为如图2所示的折线.一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动.已知带电微粒质量m=1.0×10﹣20 kg,带电荷量q=﹣1.0×10﹣9 C,A点距虚线MN的距离d1=1.0cm,不计带电微粒的重力,忽略相对论效应.求:
①B点距虚线MN的距离d2;
②带电微粒在A、B之间震荡的周期T.
如图,质量M="l" kg的木板静止在水平面上,质量m="l" kg、大小可以忽略的铁块静止在木板的右端。设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间的动摩擦因数μ2=0.4,取g="10" m/s2.现给铁块施加一个水平向左的力F
(1)若力F恒为8 N,经1 s铁块运动到木板的左端。求:木板的长度L
(2)若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图中作出铁块受到的摩擦力f随力F大小变化的图象
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
如图所示,A、B是两块竖直放置的平行金属板,相距为2l,分别带有等量的负、正电荷,在两板间形成电场强度大小为E的匀强电场,A板上有一小孔(它的存在对两极板间的匀强电场分布的影响可忽略不计)。孔的下沿右侧有一条与板垂直的水平光滑绝缘轨道,一个质量为m、电荷量q(q>0)的小球(可视为质点),在外力作用下静止在轨道的中点P处,孔的下沿左侧也有一与板垂直的水平光滑绝缘轨道,轨道上距A板l处有一固定挡板,长为l的轻弹簧左端固定在挡板上,右端固定一块轻小的绝缘材料制成的薄板Q,撤去外力释放带电小球,它将在电场力作用下由静止开始向左运动,穿过小孔(不与金属板A接触)后与薄板Q一起压缩弹簧,由于薄板Q及弹簧的质量都可以忽略不计,可认为小球与Q接触过程中,不损失机械能,小球从接触Q开始,经历时间,第一次把弹簧压缩至最短,然后又被弹簧弹回,由于薄板Q的绝缘性能有所欠缺,使得小球每次离开弹簧的瞬间,小球的电荷量都损失一部分,而变成该次刚与弹簧接触时小球电荷量的
(k大于1)
(1)求小球第一次接触Q时的速度大小;
(2)假设小球被第n次弹回后向右运动的最远处没有到B板,试导出小球从第n次接触Q到本次向右运动至最远处的时间的表达式;
(3)假设小球经若干次弹回后向右运动的最远点恰好能到达B板,求小球从开始释放至刚好到达B点经历的时间