.如图,已知抛物线经过点
,抛物线的顶点为
,过
作射线
.过顶点
平行于
轴的直线交射线
于点
,
在
轴正半轴上,连结
.
(1)求该抛物线的解析式;
(2)若动点
从点
出发,以每秒1个长度单位的速度沿射线
运动,设点
运动的时间为
.问当
为何值时,四边形
分别为平行四边形?直角梯形?等腰梯形?
(3)若
,动点
和动点
分别从点
和点
同时出发,分别以每秒1个长度单位和2个长度单位的速度沿
和
运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为
,连接
,当
为何值时,四边形
的面积最小?并求出最小值及此时
的长.
为执行中央“节能减排,美化环境,建设美丽新农村” 的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃 料问题.两种型号沼
气池的占地面积、使用农户数及造价见下表:
型号 |
占地面积 (单位:m2/个) |
使用农户数 (单位:户/个) |
造价 (单位:万元/个) |
A |
15 |
18 |
2 |
B |
20 |
30 |
3 |
已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.
(1)满足条件的方案共有哪几种?写出解答过程.
(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?
如图,已知A(4,a),B(-2,-4)是一次函数y=k x+b 的图象和反比例函数的图象的交点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
(3)根据图象求出使一次函数的值大于反比例函数的值时,x的取值范围.
课堂上,李老师出了这样一道题:已知x=2013,求代数式的值。小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。
甲种商品每件价格比乙种商品多5元,用90元买得甲种商品的件数与用60元买得乙种商品的件数相等,求甲、乙两商品每件价格各是多少元?
已知与
-2成反比例,且当
=4时,
=5, 求:
(1)与
之间的函数关系式;
(2)当时,求
的值.