结合数轴与绝对值的知识回答下列问题:
数轴上表示1和4的两点之间的距离是_________;表示-3和2的两点之间的距离是_________;表示-5和-4的两点之间的距离是_________;一般地,数轴上表示数
和数
的两点之间的距离等于_____________.
如果表示数
和-2的两点之间的距离是3,那么
=__________.
若数轴上表示数
的点位于-4与2之间,求
的值;
当
______时,
的值最小,最小值是____________
计算: .
如图,直线 交 轴于点 ,交 轴于点 ,抛物线 经过点 ,点 ,且交 轴于另一点 .
(1)直接写出点 ,点 ,点 的坐标及拋物线的解析式;
(2)在直线 上方的抛物线上有一点 ,求四边形 面积的最大值及此时点 的坐标;
(3)将线段 绕 轴上的动点 顺时针旋转 得到线段 ,若线段 与抛物线只有一个公共点,请结合函数图象,求 的取值范围.
在 中, , ,点 在边 上, 且 , 交边 于点 ,连接 .
(1)特例发现:如图1,当 时,
①求证: ;
②推断: ;
(2)探究证明:如图2,当 时,请探究 的度数是否为定值,并说明理由;
(3)拓展运用:如图3,在(2)的条件下,当 时,过点 作 的垂线,交 于点 ,交 于点 ,若 ,求 的长.
受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售."一方有难,八方支援"某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元 千克的价格出售.设经销商购进甲种水果 千克,付款 元, 与 之间的函数关系如图所示.
(1)直接写出当 和 时, 与 之间的函数关系式;
(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额 (元 最少?
(3)若甲,乙两种水果的销售价格分别为40元 千克和36元 千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共 千克,且销售完 千克水果获得的利润不少于1650元,求 的最小值.
如图, 是 的直径, , 是 上两点,且 ,连接 , .过点 作 交 的延长线于点 .
(1)判定直线 与 的位置关系,并说明理由;
(2)若 , ,求图中阴影部分的面积.