如图,在平面直角坐标系中,已知直线交
轴于点A,交
轴于点B,抛物线
经过点A和点(2,3),与
轴的另一交点为C.
求此二次函数的表达式
若点P是
轴下方的抛物线上一点,且△ACP的面积为10,求P点坐标;
若点D为抛物线上AB段上的一动点(点D不与A,B重合),过点D作DE⊥
轴交
轴于F,交线段AB于点E.是否存在点D,使得四边形BDEO为平行四边形?若存在,请求出满足条件的点D的坐标;若不存在,请通过计算说明理由.
已知:如图,是
的中点,
,
.求证:
.
求方程中的值:
.
计算:.
一位同学拿了两块三角尺
,
做了一个探究活动:将
的直角顶点
放在
的斜边
的中点处,设
.
(1)如图(1),两三角尺的重叠部分为,则重叠部分的面积为,周长为.
(2)将图(1)中的绕顶点
逆时针旋转
,得到图26(2),此时重叠部分的面积为,周长为.
(3)如果将绕
旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为.
(4)在图(3)情况下,若,求出重叠部分图形的周长.
某百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元。为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?