如图,设P是圆上的动点,点是在轴上的投影,为线段PD上一点,且.点、.(1)设在轴上存在定点,使为定值,试求的坐标,并指出定值是多少?(2)求的最大值,并求此时点的坐标.
已知点(1,2)是函数的图象上一点,数列的前项和为.(I)求数列的通项公式;(II)若,求数列的前项和.
在中,角所对的边分别为,,,且.(I)求;(II)若,且,求.
如图,在底面是正方形的四棱锥–中,平面⊥平面,===2.(I)求证:⊥; (II)求直线与平面所成的角的正弦值.
(Ⅰ)求数列的通项公式; (Ⅱ)记,求使成立的的最大值
(I)求证:; (II)求直线与面所成角的余弦值大小.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号