(本小题满分14分)
设函数在
及
时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有
成立,求c的取值范围。
在等差数列中,
,
.
(1)求数列的通项公式;
(2)对任意,将数列
中落入区间
内的项的个数记为
,求数列
的前
项和
.
设函数.
(1)当时,求函数
的定义域;
(2)若函数的定义域为
,试求
的取值范围.
已知曲线的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是:
求直线
与曲线
相交所成的弦的弦长.
如图,,
,
,
四点在同一圆上,
的延长线与
的延长线交于
点,且
.
(1)证明:;
(2)延长到
,延长
到
,使得
,证明:
,
,
,
四点共圆.
已知函数,
.
(1)若函数在点
处的切线方程为
,求
的值;
(2)若函数有三个不同的极值点,求
的值;
(3)若存在实数,使对任意的
,不等式
恒成立,求正整数
的最大值.