(本小题满分14分)
设函数在
及
时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有
成立,求c的取值范围。
已知点,在坐标轴上求一点
,使直线
的倾斜角为
.
如图所示,正方体ABCD—A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.
已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.
(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;
(2)若棱锥E-DFC的体积为,求
的值;
(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.
已知与两平行直线
都相切,且圆心
在直线
上,
(Ⅰ)求的方程;
(Ⅱ)斜率为2的直线与
相交于
两点,
为坐标原点且满足
,求直线
的方程。
【原创】如图,在正方体中
①求证:平面
;
②求证:与平面
的交点
是
的中心(正三角形五心合一,统称中心)