如图所示,在E=103V/m的竖直匀强电场中,有一光滑的半圆形绝缘轨道QPN与一水平绝缘轨道MN连接,半圆形轨道平面与电场线平行,P为QN圆弧的中点,其半径R=40cm,一带正电q=10-4C的小滑块质量m=10g,与水平轨道间的动摩擦因数μ=0.15,位于N 点右侧1.5m处,取g=10m/s2,求:
要使小滑块恰能运动到圆轨道的最高点Q,则滑块应以多大的初速度v0向左运动?
这样运动的滑块通过P点时对轨道的压力是多大?
|
如图甲所示,在边界MN左侧存在斜方向的匀强电场E1,在MN的右侧有竖直向上、场强大小为E2=0.4N/C的匀强电场,还有垂直纸面向内的匀强磁场B(图甲中未画出)和水平向右的匀强电场E3(图甲中未画出),B和E3随时间变化的情况如图乙所示,P1P2为距MN边界2.28m的竖直墙壁,现有一带正电微粒质量为4×10-7kg,电量为1×10-5C,从左侧电场中距MN边界m的A处无初速释放后,沿直线以1m/s速度垂直MN边界进入右侧场区,设进入右侧场时刻t=0, 取g =10m/s2.求:
(1)MN左侧匀强电场的电场强度E1的大小及方向。(sin37º=0.6);
(2)带电微粒在MN右侧场区中运动了1.5s时的速度的大小及方向;
(3)带电微粒在MN右侧场区中运动多长时间与墙壁碰撞?(≈0.19)
如图所示,某人距离墙壁10m起跑,向着墙壁冲去,挨上墙之后立即返回出发点。设起跑的加速度为4 m/s2,运动过程中的最大速度为4 m/s,快到达墙根时需减速到零,不能与墙壁相撞。减速的加速度为8 m/s2,返回时达到最大速度后不需减速,保持最大速度冲到出发点.求该人总的往返时间为多少?
如图所示,质量为1kg的滑块,以5m/s的水平向右初速度滑上静止在光滑水平面上的平板小车,小车足够长,质量为4kg。已知小车与滑块间的动摩擦因数为0.4。求:
①滑块与小车的最终速度;
②整个运动过程中产生的内能;③滑块相对小车滑行的距离。
如图所示,MNPQ是一块
截面为正方形的玻璃砖,其边长MN="30" cm。一束激光AB射到玻璃砖的MQ面上(入射点为B)进入玻璃砖后在QP面上的F点(图中未画出)发生全反射,恰沿DC方向射出。其中B为MQ的中点,∠ABM=30°,PD=7.5 cm,∠CDN=30°。
①画出激光束在玻璃砖内的光路示意图,求出QP面上的反射点F到Q点的距离QF;
②求出该玻璃砖的折射率。
③求出激光束在玻璃砖内的传播速度(真空中光速c=3×108m/s)。
如图所示,在一端封闭的U形管中用水银柱封一段空气柱L,当空气柱的温度为14℃时,左臂水银柱的长度h1=10cm,右臂水银柱长度h2=7cm,气柱长度L=15cm;将U形管放入100℃水中且状态稳定时,h1变为7cm。分别写出空气柱在初末两个状态的气体参量,并求出末状态空气柱的压强和当时的大气压强(单位用cmHg)。