游客
题文

施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为X轴建立直角坐标系(如图所示).

(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.

(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.

在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:

若每人组装同一种型号玩具的速度都相同,根据以上信息,解答下列问题:
(1)从上述统计图可知,A 型玩具、B型玩具、C型玩具各组装多少套?
(2)若每人组装A型玩具16套与组装C型玩具12套所用的时间相同,求a的值.

观察下列方程及其解的特征:
(1)x+=2的解为x1=x2=1;
(2)x+=的解为x1=2,x2=
(3)x+=的解为x1=3,x2=

解答下列问题:
(1)请猜想:方程x+=的解为x1=,x2=
(2)请猜想:关于x的方程x+=的解为x1=a,x2=(a≠0);
(3)下面以解方程x+=为例,验证(1)中猜想结论的正确性.
解:原方程可化为5x2-26x=-5.
(下面请大家用配方法写出解此方程的详细过程)

如图,抛物线与x轴交于点A、B两点,与y轴交于点C,且A点坐标(-3,0),连接BC、AC.

(1)求该抛物线解析式;
(2)求AB和OC的长;
(3)点E从点B出发,沿x轴向点A运动(点E与点A、B不重合),过点E作直线l平行AC,交BC于点D,设BE的长为m,△BDE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(4)在(3)的条件下,连接CE,求△CDE面积的最大值.

如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.

(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=30°,求图中阴影部分的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号