(本题12分)如图,两个同样大小的等边△ABC和△ACD,边长为a,它们拼成一个菱形ABCD,另一个足够大的等边△AEF绕点A旋转,AE与BC相交于点M,AF与CD相交于点N。(1)证明:∠DAN=∠CAM;
(2)求四边形AMCN的面积;
(3)探索△AMN何时面积最小,并写出这个最小面积的值.
问题:如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=800,则∠BEC=;若∠A=n0,则∠BEC=.
探究:
(1)如图2,在△ABC中,BD、BE三等分∠ABC,CD、CE三等分∠ACB.若∠A=n0,则∠BEC=;
(2)如图3,在△ABC中,BE平分∠ABC,CE平分外角∠ACM.若∠A=n0,则∠BEC=;
(3)如图4,在△ABC中,BE平分外角∠CBM,CE平分外角∠BCN.若∠A=n0,则∠BEC=.
如图,⊙O是△ABC的外接圆,AB=AC,过点A作AD∥BC交BO的延长线于点D.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径OB=5,BC=8,求线段AD的长.
保障房建设是民心工程,某市从2009年加快保障房建设工程.现统计了该市从2009年到2013年这5年新建保障房情况,绘制成如图1、2所示的折线统计图和不完整的条形统计图.
(1)小颖看了统计图后说:“该市2012年新建保障房的套数比2011年少了.”你认为小颖的说法正确吗?请说明理由;
(2)求2012年新建保障房的套数,并补全条形统计图;
(3)求这5年平均每年新建保障房的套数.
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F.
(1)求证:四边形BCFE是菱形;
(2)若,求菱形BCFE的面积.
列方程或方程组解应用题:
A、B两地相距15千米,甲从A地出发步行前往B地,15分钟后,乙从B地出发骑车前往A地,且乙骑车的速度是甲步行速度的3倍.乙到达A地后停留45分钟,然后骑车按原路原速返回,结果甲、乙二人同时到达B地.求甲步行的速度.