已知:在如图1所示的平面直角坐标系xOy中,A,C两点的坐标分别为,
(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O—A—B—C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.
(1)结合以上信息及图2填空:图2中的m= ;
(2)求B,C两点的坐标及
图2中OF的长;
(3)在图1中,当动点P恰为经过O,B两点的抛物线W的顶点时,
① 求此抛物线W的解析式;
② 若点Q在直线上方的抛物线W上,坐标平面内另有一点R,满足以B,
P,Q,R四点为顶点的四边形是菱形,求点Q的坐标.
已知代数式 5a+3b的值为 -4.
(1)求代数式 8a- 3(a-b-3)-9 的值;
(2)求代数式 2(a+b-5)- (7a+5b-10) 的值;
(3)求代数式 -6(3a-2b -1)+3(2a-5b-2)+(2a-3b+10) 的值.
根据你的生活与学习经验,对代数式 表示的实际意义作出两种不同的解释.
已知x2+y2-6x+10y+34=0,求x+y的值。
(本题6分)已知一个正数的平方根为,求这个正数。
(每小题6分,共12分)
(1)先化简,再求值: [(2x-3y)2-2x(2x+3y)]÷9y,其中x=3,y=-2.
(2)已知a+b=4,ab=3,求(a-b)2的值.