游客
题文

如图,已知A(n,-2),B(1,4)是一次函数的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.
 
(1)求反比例函数和一次函数的关系式;
(2)求△AOB的面积;
(3)求不等式的解集(直接写出答案).

科目 数学   题型 解答题   难度 中等
知识点: 平行线分线段成比例
登录免费查看答案和解析
相关试题

若方程 x 2 + 2 x - 1 = b 有四个互不相等的根,求 b 的取值范围.

甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:

甲公司经理:如果我公司每辆汽车月租费 3000 元,那么 50 辆汽车可以全部租出.如果每辆汽车的月租费每增加 50 元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费 200 元.

乙公司经理:我公司每辆汽车月租费 3500 元,无论是否租出汽车,公司均需一次性支付月维护费共计 1850 元.

说明:①汽车数量为整数;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.

在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:

(1)当每个公司租出的汽车为 10 辆时,甲公司的月利润是____元;当每个公司租出的汽车为____辆时,两公司的月利润相等;

(2)求两公司月利润差的最大值;

(3)甲公司热心公益事业,每租出 1 辆汽车捐出 a ( a > 0 ) 给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为 17 辆时,甲公司剩余的月利润与乙公司月利润之差最大,求 a 的取值范围.

在“乡村振兴”行动中,某村办企业以 A , B 两种农作物为原料开发了一种有机产品. A 原料的单价是 B 原料单价的 1 . 5 倍,若用 900 元收购 A 原料会比用900元收购 B 原料少 100 kg .生产该产品每盒需要 A 原料 2 kg B 原料 4 kg ,每盒还需其他成本 9 元.市场调查发现:该产品每盒的售价是 60 元时,每天可以销售 500 盒;每涨价 1 元,每天少销售 10 盒.

(1)求每盒产品的成本(成本 = 原料费 + 其他成本 )

(2)设每盒产品的售价是 x 元( x 是整数),每天的利润是 w 元,求 w 关于 x 的函数解析式(不需要写出自变量的取值范围);

(3)若每盒产品的售价不超过 a 元( a 是大于 60 的常数,且是整数),直接写出每天的最大利润.

红星公司销售一种成本为 40 元/件的产品,若月销售单价不高于 50 / 件,一个月可售出 5 万件;月销售单价每涨价 1 元,月销售量就减少 0 . 1 万件.其中月销售单价不低于成本.设月销售单价为 x (单位:元/件),月销售量为 y (单位:万件).

(1)直接写出 y x 之间的函数关系式,并写出自变量 x 的取值范围;

(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?

(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款 a 元.已知该公司捐款当月的月销售单价不高于 70 元/件,月销售最大利润是 78 万元,求 a 的值.

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位: km / h )是车流密度(单位:辆 / km ) 的函数.当桥上的车流密度达到 200 / km 时,造成堵塞,此时车流速度为 0 ;当车流密度不超过 20 / km 时,车流速度为 60 km / h ,研究表明:当 0 x 200 时,车流速度是车流密度的一次函数.

(1)当 0 x 200 时,求 v x 之间的函数解析式 v x

(2)当车流密度多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆 / h ) f x = x v x 可以达到最大,并求出最大值(精确到辆 / h ) .

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号