游客
题文

某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.
如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?
设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其它因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?

科目 数学   题型 解答题   难度 较易
知识点: 一元二次方程的最值 应用类问题
登录免费查看答案和解析
相关试题

已知直线y1=x+m与x轴、 y轴分别交于点A、B,与双曲线(x<0)分别交于点C、D,且C点的坐标为(-1,2).

(1)分别求出直线AB及双曲线的解析式;
(2)求出点D的坐标;
(3)在坐标轴上找一点M,使得以M、C、D为顶点的三角形是直角三角形,请直接写出M点坐标.

某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本
逐年增长.已知该养殖户第1年的可变成本为2.6万元.设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为_______万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.

如图,在△ABC中,D,E分别是AB,AC的中点,过点E作EF//AB,交BC于点F.

(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?

解方程:
(1);(2);(3)x2-5x-6=0.

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,
连接AM、CM.其中BN=BM,∠MBN=60°,连接EN

(1)证明:△ABM≌△EBN
(2)当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为时,求正方形的边长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号