游客
题文

某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.
如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?
设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其它因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?

科目 数学   题型 解答题   难度 较易
知识点: 一元二次方程的最值 应用类问题
登录免费查看答案和解析
相关试题

(本题满分8分)
如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.

(1)求线段OD的长;
(2)若,求弦MN的长.

(本题满分8分)
(1)解方程:3x2+7x+2=0.
(2)解不等式组

(本题满分8分)计算:
(1)(-3)0-+|1-|
(2)先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.

(本小题满分7分)如图,平面直角坐标系中,点ABCx轴上,点DEy轴上,OA=OD=2,OC=OE=4,2OB=OD,直线AD与经过BEC三点的抛物线交于FG两点,与其对称轴交于M.点P为线段FG上一个动点(与FG不重合),
PQy轴与抛物线交于点Q.


(1)求经过BEC三点的抛物线的解析式;
(2)是否存在点P,使得以PQM为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由;

(本小题满分7分)如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,
(1)找出当AP+BP能得到最小值时,点P的位置,并证明
(2)求出AP+BP最小值

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号