.(本题满分13分)设函数,方程f(x)=x有唯一的解,已知f(xn)=xn+1(n∈N﹡)且f(xl)=. (1)求证:数列{)是等差数列; (2)若,求Sn=b1+b2+b3+…+bn (3)在(2)的条件下,是否存在最小正整数m,使得对任意n∈N﹡,有成立,若存在,求出m的值;若不存在,请说明理由。
已知函数在处取得极值. (1)讨论和是函数的极大值还是极小值; (2)过点作曲线的切线,求此切线方程.
已知函数,曲线在点处的切线为,若时,有极值. (1)求的值; (2)求在上的最大值和最小值.
已知数列。 (1)求的值; (2)猜想的表达式并用数学归纳法证明。
用数学归纳法证明:
当实数取何值时,复数(其中是虚数单位). (1)是实数;(2)是纯虚数;(3)等于零.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号