如图所示,MN是相距为d 的两平行金属板,O、为两金属板中心处正对的两个小孔,N板的右侧空间有磁感应强度大小均为B且方向相反的两匀强磁场区,图中虚线CD为两磁场的分界线,CD线与N板的距离也为d.在磁场区内适当位置放置一平行磁场方向的薄挡板PQ,并使之与O、
连线处于同一平面内.
现将电动势为E的直流电源的正负极按图示接法接到两金属板上,有O点静止释放 的带电粒子(重力不计)经MN板间的电场加速后进入磁场区,最后恰好垂直撞上挡板PQ而停止运动。试求:带电粒子在磁场中做圆周运动的轨道半径;
带电粒子的电性和比荷
;
带电粒子在电场中运动的时间t1与在磁场中运动的时间t2的比值.
如图所示,一圆柱形绝热气缸竖直放置,通过绝热活塞封闭着一定质量的理想气体。活塞的质量为m,横截面积为S,与容器底部相距h。现通过电热丝缓慢加热气体,当气体的温度为T1时活塞上升了h。已知大气压强为p0,重力加速度为g,不计活塞与气缸间摩擦。
(1)求温度为T1时气体的压强;
(2)现停止对气体加热,同时在活塞上缓慢添加砂粒,当添加砂粒的质量为m0时,活塞恰好回到原来位置,求此时气体的温度。
如图所示,离子源A产生的初速度为零、带电量均为q,质量不同的正离子,被电压为U0的加速电场加速后匀速通过准直管,垂直射入平行板间的匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场,已知∠MNQ=90°,HO=d,HS=2d。(忽略粒子所受重力)
(1)求偏转电场场强E0的大小以及HM与MN的夹角;
(2)求质量为m的正离子在磁场中做圆周运动的半径;
(3)若质量为9m的正离子恰好垂直打在NQ的中点S1处,试求能打在边界NQ上的正离子的质量范围。
某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。已知赛车质量m=0.1kg,通电后以额定功率P=1.5W工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不计。图中L=10.00m,R=0.32m,h=1.25m,s=1.50m。问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10m/s2)
如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点。从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q="1." 0×10-3C,g取10m/s2。求:
(1)小球释放点的高度h;
(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:
①小球从P到A经历的时间;
②若满足条件的磁场区域为一矩形,求最小的矩形面积。
如图所示,两足够长的平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面的夹角,导轨电阻不计,整个装置处于垂直于导轨平面向上的匀强磁场中。长为L的金属棒垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量m、电阻为R。两金属导轨的上端连接一个电阻,其阻值也为R。现闭合开关K ,给金属棒施加一个方向垂直于杆且平行于导轨平面向上的、大小为F=2mg的恒力,使金属棒由静止开始运动,若金属棒上滑距离为s时速度恰达到最大,最大速度vm。(重力加速度为g, sin37°=0.6,cos37°=0.8)求:
(1)求金属棒刚开始运动时加速度大小;
(2)求匀强磁场的磁感应强度的大小;
(3)求金属棒由静止开始上滑2s的过程中,金属棒上产生的电热Q1。