(本题12分)已知△ABC的三个顶点坐标分别为A, B
,C
,
(Ⅰ)求AC边上的中线所在直线方程;
(Ⅱ)求AB边上的高所在直线方程;
(Ⅲ)求BC边的垂直平分线的方程。
(本小题满分12分,(1)小问4分,(2)小问8分)已知为椭圆
上两动点,
分别为其左右焦点,直线
过点
,且不垂直于
轴,
的周长为
,且椭圆的短轴长为
.
(1)求椭圆的标准方程;
(2)已知点为椭圆
的左端点,连接
并延长交直线
于点
.求证:直线
过定点.
已知函数.
(1)若函数在
时取得极值,求实数
的值;
(2)若对任意
恒成立,求实数
的取值范围.
某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交
元的管理费,预计当每件产品的售价为
元(
)时,一年的销售量为
万件.
(1)求该分公司一年的利润(万元)与每件产品的售价
的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出
的最大值.
已知抛物线过点
.
(1)求抛物线的方程,并求其准线方程;
(2)过焦点且斜率为
的直线
与抛物线交于
两点,求
的面积.
如图所示,四棱锥中,底面
是边长为
的正方形,侧棱
底面
,且
,
是
的中点.
(1)证明:平面
;
(2)求三棱锥的体积.