(本题8分)数学课上,老师出示了如下框中的题目.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况•探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:
AE DB(填“>”,“<”或“=”).
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE DB(填 “>”,“<”或“=”).
理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的
边长为1,AE=2,求CD的长(请你直接写出结果) .
![]() |
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r.
已知:如图,在同心圆中,大圆的弦AB交小圆于C、D两点.
(1)求证:∠AOC=∠BOD;
(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.
如图,小亮晚上在路灯下散步,已知灯杆OA=6.4m,他从灯杆底部的点O处沿直线前进9m到点D时,其影长DF=3m,当他继续前进到达点F时,其影子是变长还是变短?变化量为多少?
已知关于的一元二次方程
有两个实数根
和
.
(1)求实数的取值范围;
(2)当时,求
的值.
解下列方程(每小题3分,共9分)
(1)
(2)(x+3)2=2x+5
(3)(2x+1)(x-3)=-4