据报道,最近已研制出一种可以投入使用的电磁轨道炮,其原理如右图所示.炮弹(可视为长方形导体)置于两固定的平行导轨之间,并与轨道壁密接.开始时炮弹在导轨的一端,通电流后,炮弹会被磁场力加速,最后从位于导轨另一端的出口高速射出.设两导轨之间的距离d=0.10m,导轨长L=5.0m,炮弹质量m=0.30kg.导轨上的电流I的方向如图中箭头所示.可认为,炮弹在轨道内运动时,它所在处磁场的磁感应强度始终为B=2.0T,方向垂直于纸面向里.若炮弹出口速度为υ=2.0×103m/s,求通过导轨的电流I.(忽略摩擦力与重力的影响)
质量m=1吨的汽车通过圆形拱形桥时的速率恒定,拱形桥的半径R=5m。试求:
(1)汽车在最高点对拱形桥的压力为车重的一半时汽车的速度;
(2)汽车在最高点对拱形桥的压力为零时汽车的速度。
将一个物体以10m/s的速度从45m的高度水平抛出,试求:
(1)物体在空中运动的时间;
(2)物体落地时的速度大小;
(3)物体落地点离抛出点的水平距离。
如图所示,在xOy平面内有一范围足够大的匀强电场,电场强度大小为E,电场方向在图中未画出.在y≤l的区域内有磁感应强度为B的匀强磁场,磁场方向垂直于xOy平面向里.一电荷量为+q、质量为m的粒子,从O点由静止释放,运动到磁场边界P点时的速度刚好为零,P点坐标为(l,l),不计粒子所受重力. 
(1)求从O到P的过程中电场力对带电粒子做的功,并判断匀强电场的方向.
(2)若该粒子在O点以沿OP方向、大小
的初速度开始运动,并从P点离开磁场,此过程中运动到离过OP的直线最远位置时的加速度大小
,则此点离OP直线的距离是多少?
(3)若有另一电荷量为-q、质量为m的粒子能从O点匀速穿出磁场,设
,求该粒子离开磁场后到达y轴时的位置坐标.
如图所示,在倾角为θ的斜面上放置一内壁光滑的凹槽A,凹槽A与斜面间的动摩擦因数μ=
,槽内紧靠右挡板处有一小物块B,它与凹槽左挡板的距离为d.A、B的质量均为m,斜面足够长.现同时由静止释放A、B,此后B与A挡板每次发生碰撞均交换速度,碰撞时间都极短.已知重力加速度为g.求:
(1)物块B从开始释放到与凹槽A发生第一次碰撞所经过的时间t1.
(2)B与A发生第一次碰撞后,A下滑时的加速度大小aA和发生第二次碰撞前瞬间物块B的速度大小v2.
(3)凹槽A沿斜面下滑的总位移大小x.
如图所示,两根等高光滑的
圆弧轨道,半径为r、间距为L,轨道电阻不计.在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L、质量为m、电阻不计的金属棒从轨道的顶端ab处由静止开始下滑,到达轨道底端cd时受到轨道的支持力为2mg.整个过程中金属棒与导轨电接触良好,求:
(1)棒到达最低点时的速度大小和通过电阻R的电流.
(2)棒从ab下滑到cd过程中回路中产生的焦耳热和通过R的电荷量.
(3)若棒在拉力作用下,从cd开始以速度v0向右沿轨道做匀速圆周运动,则在到达ab的过程中拉力做的功为多少?