如图所示,在竖直向下的磁感应强度为B的匀强磁场中,金属框架ABCD固定在水平面内(整个框架电阻忽略不计),AB与CD平行且足够长,BC与CD夹角,粗细均匀的光滑导体棒EF(垂直于CD)在外力作用下以垂直于自身的速度V向右匀速运动,
导体棒在滑动过程中始终与金属框架接触良好,经过C点瞬间作为计时起点,下列关于电路中电流大小I与时间t、导体棒消耗的电功率P与导体棒水平移动的距离x变化规律的图象中正确的是( )
劲度系数为20N/cm的弹簧振子,它的振动图象如图所示,在图中A点对应的时刻()
A.振子所受的弹力大小为0.5N,方向指向x轴的负方向 |
B.振子的速度方向指向x轴的正方向 |
C.在0~4s内![]() |
D.在0~4s内振子通过的路程为0.35cm,位移为0 |
1905年爱因斯坦提出狭义相对论,狭义相对论的出发点是以两条基本假设为前提的,这两条基本假设是()
A.同时的绝对性与同时的相对性 | B.运动的时钟变慢与运动的尺子缩短 |
C.时间间隔的绝对性与空间距离的绝对性 | D.相对性原理与光速不变原理 |
在真空中的光滑水平绝缘面上有一带电小滑块。开始时滑块静止。若在滑块所在空间加一水平匀强电场E1,持续一段时间后立即换成与E1相反方向的匀强电场E2。当电场E2与电场E1持续时间相同时,滑块恰好回到初始位置,且具有动能Ek。在上述过程中,E1对滑块的电场力做功为W1,电场力大小为F1;E2对滑块的电场力做功为W2,电场力大小为F2则:
A.F1=F2 | B.4F1=F2 |
C.W1=0.25Ek W2=0.75Ek | D.W1=0.20Ek W2=0.80Ek |
如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线)。两线圈在距磁场上界面
高处由静止开始自由下落,再进入磁场,最后落到地面。运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界。设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2。不计空气阻力,则:
A.v1 <v2,Q1< Q2 | B.v1 =v2,Q1= Q2 |
C.v1 <v2,Q1>Q2 | D.v1 =v2,Q1< Q2 |
如图,一个边长为l的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab与导线框的一条边垂直,ba的延长线平分导线框.在t=0时,使导线框从图示位置开始以恒定速度沿ab方向移动,直到整个导线框离开磁场区域.以i表示导线框中感应电流的强度,取逆时针方向为正.下列表示i-t关系的图示中,可能正确的是: