如图所示为学校操场上一质量不计的竖直滑杆,滑杆上端固定,下端悬空,为了研究学生沿杆的下滑情况,在杆的顶部装有一拉力传感器,可显示杆顶端所受拉力的大小,现有一学生(可视为质点)从上端由静止开始滑下,5 s末滑到杆底时速度恰好为零,从学生开始下滑时刻计时,传感器显示拉力随时间变化情况如图所示,g取10 m/s2,求:
(1)该学生下滑过程中的最大速率;
(2)图中力F1的大小;
(3)滑杆的长度.
发电站通过升压变压器、输电导线和降压变压器把电能输送到用户,如果升压变压器和降压变压器都可视为理想变压器。如图所示
(1)若发电机的输出功率是 100 kW,输出电压是250 V,升压变压器的原、副线圈的匝数比为 1∶25,求升压变压器的输出电压和输电导线中的电流;
(2)若输电导线中的电功率损失为输入功率的 4%,求输电导线的总电阻和降压变压器原线圈两端的电压。
如图所示,放置在水平面内的平行金属框架宽为L=0.4m,金属棒ab置于框架上,并与两框架垂直,整个框架位于竖直向下、磁感强度B=0.5T的匀强磁场中,电阻R=0.09Ω,ab的电阻r=0.01Ω,摩擦不计,当ab在水平恒力F作用下以v=2.5m/s的速度向右匀速运动时,求:
(1) 回路中的感应电流的大小;
(2) 恒力F的大小;
(3) 电阻R上消耗的电功率.
如图,体积为V、内壁光滑的圆柱形导热气缸顶部有一质量和厚度均可忽略的活塞;气缸内密封有温度为2.4T0、压强为1.2P0的理想气体.P0和T0分别为大气的压强和温度.已知:气体内能U与温度T的关系为U=αT,α为正的常量;容器内气体的所有变化过程都是缓慢的.求
(1)气缸内气体与大气达到平衡时的体积V1;
(2)在活塞下降过程中,气缸内气体放出的热量Q。
一气象探测气球,在充有压强为1.00 atm(即76.0 cmHg)、温度为27.0℃的氦气时,体积为3.50 m3,在上升至海拔6.50 km高空的过程中,气球内氦气压强逐渐减小到此高度上的大气压36.0 cmHg,气球内部因启动一持续加热过程而维持其温度不变.此后停止加热,保持高度不变.已知在这一海拔高度气温为-48.0℃.求:
(1)氦气在停止加热前的体积;
(2)氦气在停止加热较长一段时间后的体积.
氧气瓶在车间里充气时压强达1.5×107Pa,运输到工地上发现压强降为1.25×107Pa,已知在车间里充气时的温度为180C,工地上的气温为-30C,问氧气瓶在运输途中是否漏气?