游客
题文

把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点顺时针旋转角, 旋转后的矩形记为矩形.在旋转过程中,
(1)如图①,当点E在射线CB上时,E点坐标为              
(2)当是等边三角形时,旋转角的度数是            为锐角时);
(3)如图②,设EFBC交于点G,当EG=CG时,求点G的坐标.
(4) 如图③,当旋转角时,请判断矩形的对称中心H是否在以C为顶点,且经过点A的抛物线上.

科目 数学   题型 解答题   难度 较难
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(-4,0),B(-1,0)两点.

(1)求抛物线的解析式;
(2)在第三象限的抛物线上有一动点D.如图,若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.

在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.

(1)若花园的面积为192m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;
(2)若DC=4,AC=5,求⊙O的直径的AE.

在一个暗箱中装有红、黄、自三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是
(1)求暗箱中红球的个数.
(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树状图或列表法求解)

解下列方程:
(1)x2-4x-3=0
(2)(x-2)2=3(x-2)
(3)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号