在平面直角坐标系中,以点A(3,0)为圆心,5为半径的圆与
轴相交于点
、
(点B在点C的左边),与
轴相交于点D、M(点D在点M的下方).
(1)求以直线x=3为对称轴,且经过D、C两点的抛物线的解析式;
(2)若E为直线x=3上的任一点,则在抛物线上是否存在
这样的点F,使得以点B、C、E、F为顶点的四边形是平
行四边形?若存在,求出点F的坐标;若不存在,说明理由.
如图,点O、A、B的坐标分别为(0,0)(4,2)(3,0),将△OAB绕点O按逆时针方向旋转后,得到△OCD.(点A转到点C)
(1)画出△OCD;
(2)C的坐标为 ;
(3)求A点开始到结束所经过路径的长.
解方程:2-x-3=0.
某种水果第一天以2元的价格卖出斤,第二天以1.5元的价格卖出
斤,第三天以1.2元的价格卖出
斤,求:
(1)这三天共卖出水果多少斤?
(2)这三天共卖得多少元?
(3)这三天平均售价是多少?并计算当=30,
=40,
=50时,平均售价是多少?
出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行驶里程如下:(单位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他将最后一名乘客送到目的地时,距下午出车地点是多少千米?
(2)若汽车耗油量为升∕千米,这天下午共耗油多少升
已知、
互为相反数,
、
互为倒数,
的绝对值为2,求
.