已知函数在R上有定义,对任何实数和任何实数,都有(Ⅰ)证明;(Ⅱ)证明 其中和均为常数;(Ⅲ)当(Ⅱ)中的时,设,讨论在内的单调性并求极值。
设实数满足,求证:.
已知曲线的极坐标方程为,曲线的极坐标方程为.试求曲线和的直角坐标方程,并判断两曲线的位置关系.
已知矩阵,,求矩阵
已知:如图,点在上,,平分,交于点.求证:为等腰直角三角形.
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”. (Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由; (Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围; (Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号