(本小题满分12分)设点P的坐标为,直线l的方程为
.请写出点P到直线l的距离,并加以证明.
设不等式的解集为
,
.
(Ⅰ)证明:;
(Ⅱ)比较与
的大小,并说明理由.
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C1的极坐标方程为,直线l的极坐标方程为
。
(Ⅰ)写出曲线C1与直线l的直角坐标方程;
(Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值。
如图,四边形ABCD内接于⊙,
是⊙
的直径,
于点
,
平分
.
(Ⅰ)证明:是⊙
的切线
(Ⅱ)如果,求
.
设,函数
,函数
,
.
(Ⅰ)当时,写出函数
零点个数,并说明理由;
(Ⅱ)若曲线与曲线
分别位于直线
的两侧,求
的所有可能取值.
如图,、
为椭圆
的左、右焦点,
、
是椭圆的两个顶点,椭圆的离心率
,
.若
在椭圆
上,则点
称为点
的一个“好点”.直线
与椭圆交于
、
两点,
、
两点的“好点”分别为
、
,已知以
为直径的圆经过坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.