(本题192班必做题,其他班不做)
已知二次函数f(x)=ax2+bx+c,若f(x)+f(x+1)=2x2-2x+13
(1)求函数f(x)的解析式;
(2)画该函数的图象;
(3)当x∈[t,5]时,求函数f(x)的最大值.
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率为0.25,在B处的命中率为
,该同学选择先在A处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
![]() |
0 |
2 |
3 |
4 |
5 |
p |
0.03 |
P1 |
P2 |
P3 |
P4 |
(1)求的值;
(2)求随机变量的数学期望
;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
已知函数.
(1)求在点
处的切线方程;
(2)求函数在
上的最大值.
某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人。分别从甲、乙两组中各抽取2名工人进行技术考核。每此抽取互不影响。
(1)求从甲组抽取的工人中恰有1名女工人的概率;
(2)求抽取的4名工人中恰有2名男工人的概率..
(满分14分)
某地区的农产品第
天
的销售价格
(元∕百斤),一农户在第
天
农产品
的销售量
(百斤)(
为常数),且该农户在第7天销售农产品
的销售收入为2009元。
求该农户在第10天销售农产品
的销售收入是多少?
这20天中该
农户在哪一天的销售收入最大?为多少?
设
,点
的坐标为
,点
在抛物线
上运动,点
满足
,经过
点与
轴垂直的直线交抛物线于点
,点
满足
,求点
的轨迹方程。