已知:直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线y=-x2+mx+n经过点A和点C,动点P在x轴上以每秒1个单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿着线段CA向点A运动且速度是点P运动速度的2倍。
(1).求直线和抛物线的解析式;
(2).如果点P和点Q同时出发,运动时间为t(秒),试问t为何值时△PQA是直角三角形。
在学校举行的第八届运动会比赛中,某同学在投掷实心球时,实心球出手(点A处)的高度是1.4m,出手后的实心球沿一段抛物线运行,当运行到最大高度y=2m时,水平距离x=3m.
(1)试求实心球运行高度y与水平距离x之间的函数关系式;
(2)设实心球落地点为C,求此次实心球被推出的水平距离OC.
如图,一次函数y1=x+1的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1与y2的大小.
如图,△ABC中,DG∥EC,EG∥BC.求证:.
已知抛物线y=a+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.求这条抛物线的解析式;
如图,在△ABC中,AB=AC,若△ABC≌△DEF,且点A在DE上,点E在BC上,EF与AC交于点G.求证:△ABE∽△ECG.