如图,有6个半径都为1的圆,其圆心分别为O1(0,0),O2(2,0),O3(4,0),O4(0,2),O5(2,2),O6(4,2).记集合M={⊙Oi|i=1,2,3,4,5,6}.若A,B为M的非空子集,且A中的任何一个圆与B中的任何一个圆均无公共点,则称 (A,B) 为一个“有序集合对”(当A≠B时,(A,B) 和 (B,A) 为不同的有序集合对),那么M中 “有序集合对”(A,B) 的个数是
A.50 | B.54 | C.58 | D.60 |
已知双曲线=1的一个焦点与抛物线y2=4
x的焦点重合,且双曲线的离心率等于
,则该双曲线的方程为( )
A.x2-![]() |
B.x2-y2=15 |
C.![]() |
D.![]() ![]() |
已知椭圆=1的左焦点为F1,右顶点为A,上顶点为B.若∠F1BA=90°,则椭圆的离心率是( )
A. B.
C.
D.
若不等式x2+ax+1≥0对于一切x∈(0,]恒成立,则a的最小值是( )
A.0 | B.2 | C.-![]() |
D.-3 |
已知函数f(x)=x2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为( )
A.8 | B.6 | C.4 | D.2 |
对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是( )
A.(1,3) | B.(-∞,1)∪(3,+∞) |
C.(1,2) | D.(3,+∞) |