某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数(亩)与补贴数额
(元)之间大致满足如图1所示的一次函数关系.随着补贴数额
的不断增大,出口量也不断增加,但每亩蔬菜的收益
(元)会相应降低,且
与
之间也大致满足如图2所示的一次函数关系.
在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
求政府补贴政策实施后,种植亩数
、每亩蔬菜的收益
分别与政府补贴数额
之间的函数关系式;
要使全市种植这种蔬菜的总收益
(元)最大,政府应将每亩补贴数额
定为多少?并求出总收益
的最大值.
已知某种水果的批发单价与批发量的函数关系如图所示.
(1)请说明图中①、②两段函数图象的实际意义.
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b,另一部分与参加比赛的人数x(人)成正比例. 当x=20时,y=1600,当x=30时,y=2000.
(1)求y与x之间的函数关系式;
(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?
已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数的图象相交于点(2 ,a).
(1)求一次函数y=kx+b的表达式;
(2)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.
如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC、CF,求证:(1)FA=FC.(2)CA是∠DCF的平分线.
如图,点E、F在AB上,且AF=BE,AC=BD,AC∥BD.求证:CF∥DE.