游客
题文

设二次函数f(x)=mx2+nx+t的图像过原点,g(x)=ax3+bx−3(x>0),f(x), g(x)的导函数为,g¢(x),且="0," =−2,f(1)="g(1)," =g¢(1).
(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)求F(x)=f(x)−g(x)的极小值;
(Ⅲ)是否存在实常数k和m,使得f(x)³kx+m和g(x)£kx+m成立?若存在,求出k和m的值;若不存在,说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次剩余
登录免费查看答案和解析
相关试题

(本小题满分12分)
如图,在斜边为AB的Rt△ABC,过A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.

(1)求证:BC⊥平面PAC.
(2)求证:PB⊥平面AEF.
(3)若AP=AB=2,试用tgθ(∠BPC=θ)表示△AEF的面积、当tgθ取何值时,△AEF的面积最大?最大面积是多少?

(本小题满分12分)
如图,DC⊥平面ABCEBDCACBCEB=2DC=2,∠ACB=120°,PQ分别为AEAB的中点.

(1)证明:PQ∥平面ACD
(2)求AD与平面ABE所成角的正弦值.

(本小题满分12分)
P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.

(本小题满分13分)
在△ABC中,ABAC=5,BC=6,PA⊥平面ABCPA=8,求点PBC的距离.

(本小题满分13分)
空间四边形中,分别是的中点,,求异面直线所成的角.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号