游客
题文

.(本小题满分14分)
已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动
点。
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点
使得为定值?,若存在,求出的坐标,若不存在,说明理由。
(Ⅲ)若在第一象限,且点关于原点对称,点轴上的射影为,连接 并延长
交椭圆于点,证明:

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知椭圆C:=1(a>b>0)的离心率e=,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为

(1)求椭圆C的方程;
(2)过原点且斜率为的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;
(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交轴于点N,M,若直线OT与过点M,N 的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1与l2接通.已知AB = 60m,BC = 80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设∠EFB= α,矩形区域内的铺设水管的总费用为W.

(1)求W关于α的函数关系式;
(2)求W的最小值及相应的角α.

已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足bn=,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)若S2为S1,Sm (m∈N)的等比中项,求正整数m的值.
(3)对任意正整数k,将等差数列{an}中落入区间(2k,22k)内项的个数记为ck,求数列{cn}的前n项和Tn

如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.

(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.

已知向量a=(2cosx,2sinx),b=(cosx,cosx),设函数f(x)=a•b-,求:
(1)f(x)的最小正周期和单调递增区间;
(2)若, 且α∈(,π). 求α.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号