(本小题满分15分)
因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放,且
个单位的药剂,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
.
若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(1)若一次投放4个单位的药剂,则有效治污时间可达几天?
(2)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求
的最小值.(精确到0.1,参考数据:
取1.4)
由下列不等式:,
,
,
,…,你能得到一个怎样的一般不等式?并加以证明.
阅读下面材料:
根据两角和与差的正弦公式,有------①
------②
由①+② 得------③
令有
代入③得
(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:;
(Ⅱ)若的三个内角
满足
,试判断
的形状.
(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
函数,已知
是奇函数。
(Ⅰ)求b,c的值;
(Ⅱ)求g(x)的单调区间与极值。
如图,已知点D(0,-2),过点D作抛物线:
的切线
,切点A在第二象限。
(1)求切点A的纵坐标;
(2)若离心率为的椭圆
恰好经过A点,设切线l交椭圆的另一点为B,若设切线
,直线OA,OB的斜率为
,
,①试用斜率k表示
②当
取得最大值时求此时椭圆的方程。
已知函数.(
为自然对数的底)
(Ⅰ)求的最小值;
(Ⅱ)是否存在常数使得
对于任意的正数
恒成立?若存在,求出
的值;若不存在,说明理由.