(本小题满分15分)
因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放,且
个单位的药剂,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
.
若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(1)若一次投放4个单位的药剂,则有效治污时间可达几天?
(2)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求
的最小值.(精确到0.1,参考数据:
取1.4)
已知点在以两坐标轴为对称轴的椭圆上,你能根据
点的坐标最多写出椭圆上几个点的坐标(
点除外)?这几个点的坐标是什么?
已知抛物线的顶点在原点,焦点为圆的圆心
.
(1)求此抛物线方程;
(2)如图,是否存在过圆心的直线
与抛物线、圆顺次交于
且使得
,
成等差数列,若
存在,求出它的方程;若
不存在,说明理由.
已知椭圆,过其左焦点且斜率为
的直线与椭圆及其准线的交点从左到右的顺序为
(如图),设
.
(1)求的解析式;
(2)求的最值.
四点都在椭圆
上,
为椭圆在
轴正半轴上的焦点.已知
与
共线,
与
共线,且
.求四边形
的面积的最小值和最大值.
已知双曲线,直线
,试讨论实数
的取值范围.
(1)直线与双曲线有两个公共点;
(2)直线与双曲线只有一个公共点;
(3)与双曲线没有公共点.