已知双曲线方程为,椭圆C以该双曲线的焦点为顶点,顶点为焦点。
(1)当,
时,求椭圆C的方程;
(2)在(1)的条件下,直线:
与
轴交于点P,与椭圆交与A,B两点,若O为坐标原点,
与
面积之比为2:1,求直线
的方程;
(3)若,椭圆C与直线
:
有公共点,求该椭圆的长轴长的最小值。
b为何值时,直线x-3y+b=0与圆x2+y2-6Mx-2(M-1)y+10M2-2M-24=0相交,相切,相离?
自点P(-6,7)发出的光线l射到x轴上点A处,被x轴反射,其反射光线所在直线与圆x2+y2-8x-6y+21=0相切于点Q.求光线l所在直线方程.
已知函数y=2sin,
(1)求它的振幅、周期、初相;
(2)用“五点法”作出它在一个周期内的图象;
(3)说明y=2sin的图象可由y=sinx的图象经过怎样的变换而得到.
已知a>0,函数f(x)=-2asin+2a+b,当x∈
时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f且lg g(x)>0,求g(x)的单调区间.
定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是,且当x∈
时,f(x)=sinx.
(1)求当x∈[-,0]时,f(x)的解析式;
(2)画出函数f(x)在[-,
]上的函数简图;
(3)求当f(x)≥时,x的取值范围.