如图所示,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点。已知∠BAC=60°,∠DAE
(本题4分)右图是的正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.
已知:如图①,四边形是正方形,
是等边三角形,
为对角线
(不含
点)上任意一点,将
绕点
逆时针旋转
得到
,连接
、
、
。
(I)求证:
(II)①当点在何处时,
的值最小;
②当点在何处时,
的值最小,并说明理由;
(III)当的最小值为
时,求正方形的边长。
如图,中,
,⊙O为它的内切圆,切点分别是
、
、
。
(I)若,求:
的内切圆的半径;
(II)若的内切圆半径
,
的周长为
,则
的值为
(III)若,求
。
如图所示,要设计一座1m高的抽象人物雕塑,使雕塑的上部(腰以上)AC与下部(腰以下)BC的高度比,等于下部与全部(全身)AB的高度比,雕塑的下部应设计为多高?
已知AB与⊙O相切于点C,OA=OB,OA,OB与⊙O分别交予点D,E
(I)如图①,若⊙O的直径为8,AB=10,求OA得长(结果保留根号);
(II)如图②,连接CD,CE,若四边形ODCE为菱形,求的值。