“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.下图为我区某校2010年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图(1)该校参加机器人、建模比赛的人数分别是 人和 人;
(2)该校参加科技比赛的总人数是 人,电子百拼所在扇形的圆心角的度数是 °,并把条形统计图补充完整;
(3)从全区中小学参
加科技比赛选手中随机抽取80人,其中有32人获奖. 今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?
课本再现
(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 相等的角是 ;
类比迁移
(2)如图2,在四边形 中, 与 互余,小明发现四边形 中这对互余的角可类比(1)中思路进行拼合:先作 ,再过点 作 于点 ,连接 ,发现 , , 之间的数量关系是 ;
方法运用
(3)如图3,在四边形 中,连接 , ,点 是 两边垂直平分线的交点,连接 , .
①求证: ;
②连接 ,如图4,已知 , , ,求 的长(用含 , 的式子表示).
二次函数 的图象交 轴于原点 及点 .
感知特例
(1)当 时,如图1,抛物线 上的点 , , , , 分别关于点 中心对称的点为 , , , , ,如表:
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
①补全表格;
②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为 .
形成概念
我们发现形如(1)中的图象 上的点和抛物线 上的点关于点 中心对称,则称 是 的“孔像抛物线”.例如,当 时,图2中的抛物线 是抛物线 的“孔像抛物线”.
探究问题
(2)①当 时,若抛物线 与它的“孔像抛物线” 的函数值都随着 的增大而减小,则 的取值范围为 ;
②在同一平面直角坐标系中,当 取不同值时,通过画图发现存在一条抛物线与二次函数 的所有“孔像抛物线” 都有唯一交点,这条抛物线的解析式可能是 (填“ ”或“ ”或“ ”或“ ”,其中 ;
③若二次函数 及它的“孔像抛物线”与直线 有且只有三个交点,求 的值.
如图1,四边形 内接于 , 为直径,点 作 于点 ,连接 .
(1)求证: ;
(2)若 是 的切线, ,连接 ,如图2.
①请判断四边形 的形状,并说明理由;
②当 时,求 , 与 围成阴影部分的面积.
图1是疫情期间测温员用"额温枪"对小红测温时的实景图,图2是其侧面示意图,其中枪柄 与手臂 始终在同一直线上,枪身 与额头保持垂直.量得胳膊 , ,肘关节 与枪身端点 之间的水平宽度为 (即 的长度),枪身 .
(1)求 的度数;
(2)测温时规定枪身端点 与额头距离范围为 .在图2中,若测得 ,小红与测温员之间距离为 .问此时枪身端点 与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)
(参考数据: , , ,
为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为 的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位: 如下:
甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;
乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.
甲厂鸡腿质量频数统计表
质量 |
频数 |
频率 |
|
2 |
0.1 |
|
3 |
0.15 |
|
10 |
|
|
5 |
0.25 |
合计 |
20 |
1 |
分析上述数据,得到下表:
统计量 厂家 |
平均数 |
中位数 |
众数 |
方差 |
甲厂 |
75 |
76 |
|
6.3 |
乙厂 |
75 |
75 |
77 |
6.6 |
请你根据图表中的信息完成下列问题:
(1) , ;
(2)补全频数分布直方图;
(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;
(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位: 在 的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?